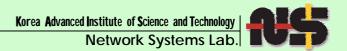
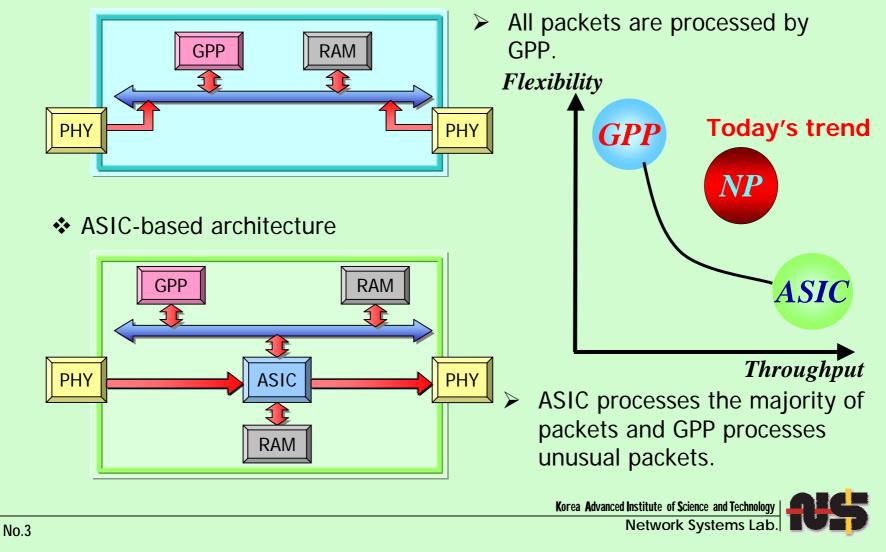

ICBN 2004, Kobe, Japan

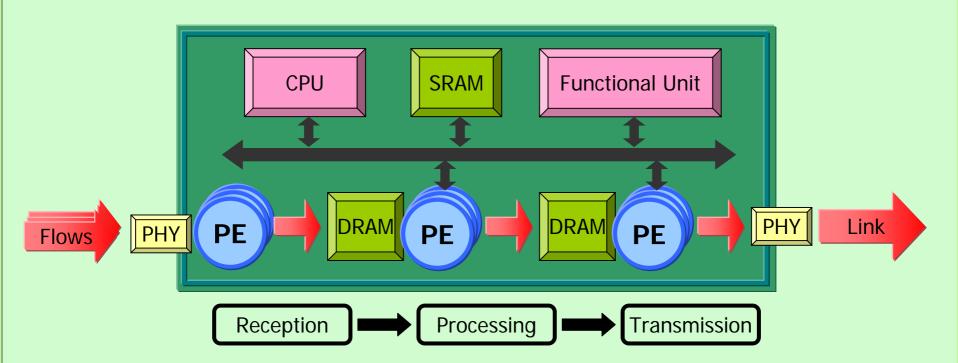
Bandwidth Allocation with Processing Constraints


April 8, 2004

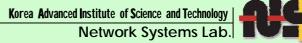
Song Chong KAIST song@ee.kaist.ac.kr


Outline

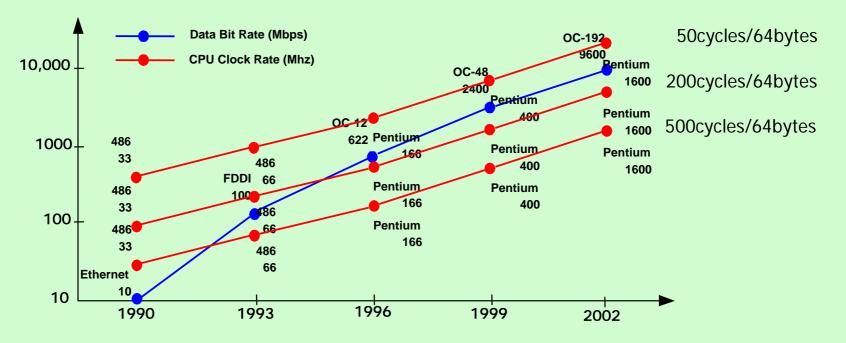
- Introduction
- □ Resource Allocation Principle
- System Model
- □ Flow Control Algorithm
- Equilibrium, Fairness & Stability
- □ IXP1200 Implementation & Performance Results
- Conclusion
- References



□ The evolution of router architecture


GPP-based architecture

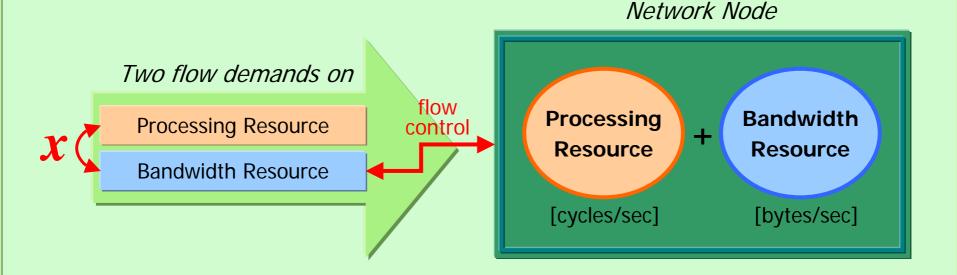
□ Logical architecture of a general NP-based node [Johnson 2002]



A network processor is mainly used for packet processing which includes CRC check, routing table look-up, header modification, and other extra processes for various network services and algorithms.

□ Network BW & silicon speed growth [Herity 2001]

- CPU speed : X 2.7 / 3year (by Moore's Law)
- Link capacity : X 4 / 3year



Hard to predict which resource to be bottlenecked !!

Korea Advanced Institute of Science and Technology Network Systems Lab.

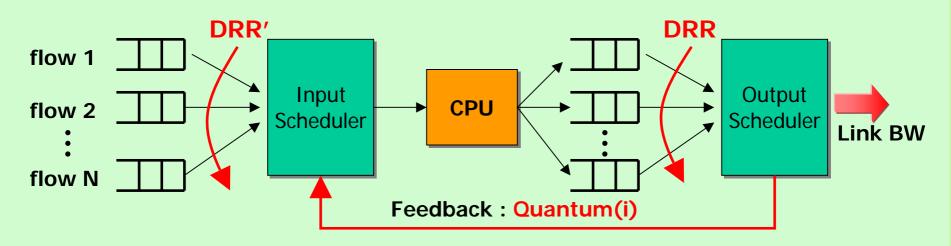
- □ Two-dimensional paradigm in flow control
 - Should consider both processing resource and bandwidth resource.
 - Hard to know the flow demand on processing resource until the processing completes.
 - ✤ Can control flows only in terms of "bytes/sec".

Packet Processing

- CommBench [9]: A telecommunications benchmark for network processors
- Header processing applications (HPA)
 - RTR: lookup on tree data structures
 - FRAG: header modifications and checksum
 - DRR: packet scheduling
 - TCP: pattern matching on header fields
- Payload processing applications (PPA)
 - CAST: encryption/decryption
 - ZIP: data compression
 - ✤ REED: forward error correction (FEC)
 - JPEG: media transcoding (DCT, Huffmann coding)

HPA	64	576	1536	(bytes)
ТСР	10.3	1.2	.4	
FRAG	7.7	.9	.3	
DRR	4.1	.5	.2	
ТСР	2.1	.2	.1	

(instructions per byte)


PPA	enc	dec	
REED	603	1052	
ZIP	226	35	
CAST	104	104	
JPEG	81	60	

(instructions per byte) Korea Advanced Institute of Science and Technology

Previous Work

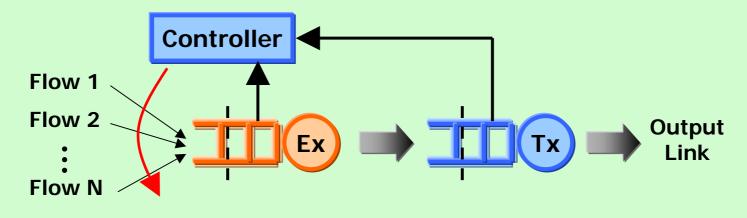
□ "Fair Resource Allocation in Active Networks" [Ramachandra 2000]

* Fairness:

 \succ "CPU_allocation(i) + BW_allocation(i)" is to be equalized.

Weakness:

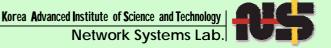
- Two-stage DRR scheduling
- Per-flow queueing
- ➢ No buffer control


Complex Not scalable Internal loss

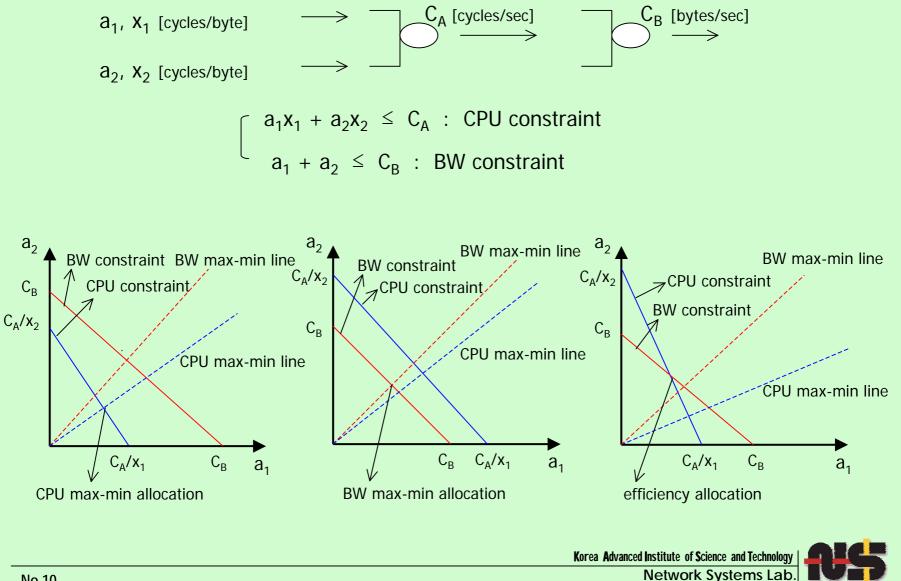
Korea Advanced Institute of Science and Technology

Network Systems Lab.

Our Approach

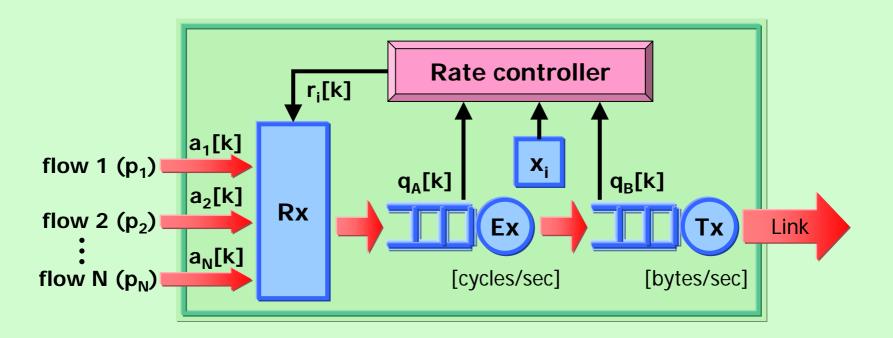

Fairness

- ✤ If BW > CPU, allocate CPU MAX-MIN fair rate.
- ✤ If BW < CPU, allocate BW MAX-MIN fair rate.</p>
- Otherwise, allocate the weighted average of above two rates.


Control

- ✤ FIFO queueing
- ✤ No per-flow queueing
- Joined control of rate & queue length

Simple
 Scalable
 No internal loss



Resource Allocation Principle

System Model

□ System model of a NP-based node employing the proposed approach

- Injected flow rate : $a_i[k] = min(p_i, r_i[k])$
- Processing density : X_i
 (the only per-flow state)

demand for processing resource demand for bandwidth resource

> Korea Advanced Institute of Science and Technology | Network Systems Lab.

[cycles/byte]

Flow Control Algorithm

❑ Processing density update : EWMA Filter

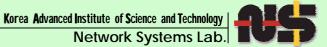
for every packet,
$$x_i = (1 - \alpha)x_i + \alpha \left(\frac{\text{processing time}}{\text{packet length}}\right)$$

$$(0 < \alpha < 1)$$

□ Fair rate (FR) is computed in two steps

Intermediate FR computation is based on PI control (BW MAX-MIN)

$$r[k] = \left[r[k-1] - \frac{A}{|Q|} (q[k-1] - q[k-2]) - \frac{BT}{|Q|} (q[k-1] - q_T) \right]^+$$

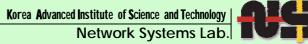

 $\mathbf{q}[\mathbf{k}]$: total queue length ($\mathbf{q}_{\mathbf{A}}[\mathbf{k}] + \mathbf{q}_{\mathbf{B}}[\mathbf{b}]$)

 \boldsymbol{q}_T : target length of total queue

A,B : control gain

T : control period

 ${\it Q}$: set of bottlenecked input flows ($|{\sf Q}|$ is the cardinality of ${\sf Q}$)



Flow Control Algorithm

Final FR computation (CPU MAX-MIN & BW MAX-MIN)

$$r_i[k] = \left(\frac{q_T - q_B[k-1]}{q_T}\right) \frac{\frac{1}{x_i}}{\sum_{i \in Q} \frac{1}{x_i}} |Q|r[k] + \left(\frac{q_B[k-1]}{q_T}\right) r[k], \quad \forall i \in N$$

- Intelligent behavior of the algorithm
 - ✤ When processing resource is the bottleneck, allocate CPU MAX-MIN rate.
 - ✤ When bandwidth resource is the bottleneck, allocate BW MAX-MIN rate.
 - When both resources are bottlenecked together, determine the degree of bottleneck intensity of each resource and allocate rate as a convex combination of CPU MAX-MIN rate and BW MAX-MIN rate.

Steady State Solutions

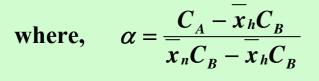
□ Three steady state solutions according to $C_{A'}$, $C_{B'}$ and the following two averages of x_i .

$$\overline{x}_{n} = \frac{\sum_{i \in Q} x_{i}}{|Q|} \quad \text{(numerical avg.)}, \qquad \overline{x}_{h} = \left(\frac{\sum_{i \in Q} \frac{1}{x_{i}}}{|Q|}\right)^{-1} \text{(harmonic avg.)}$$

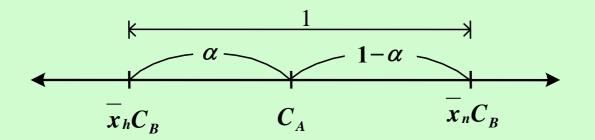
♦ If $C_A^* \ge \overline{x}_n C_B^*$ (bandwidth resource is the bottleneck),

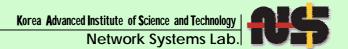
$$q_A^*=0, \quad q_B^*=q_T, \quad a_i^*=rac{C_B}{N}$$

♦ If $C_A^* \leq \overline{x}_h C_B^*$ (processing resource is the bottleneck),

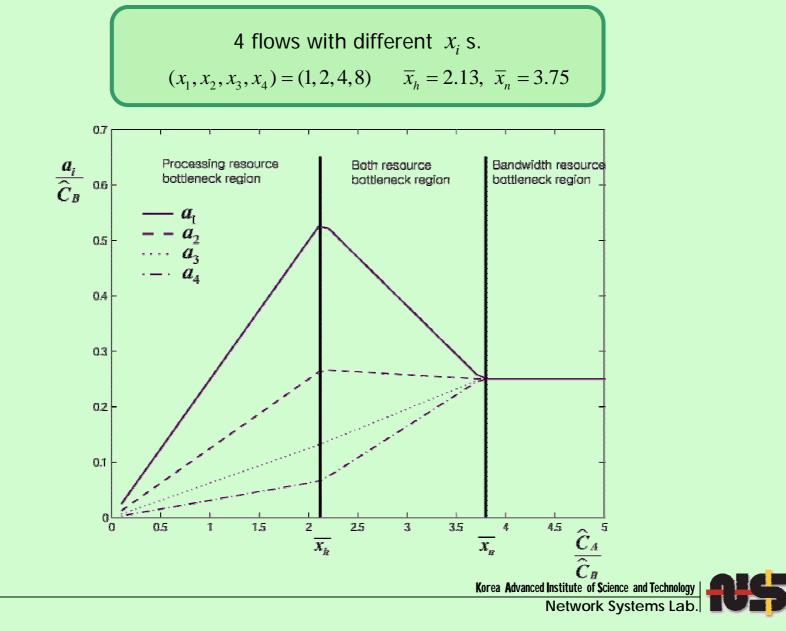

$$q_A^* = q_T, \quad q_B^* = 0, \quad a_i^* = \frac{C_A}{Nx_i}$$

Korea Advanced Institute of Science and Technology Network Systems Lab.


Steady State Solutions

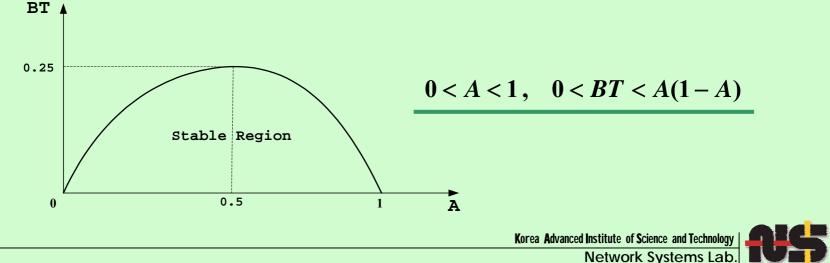

• If $\overline{x}_h C_B^* < C_A^* < \overline{x}_n C_B^*$ (both resources are bottlenecked together),

$$q_A^* = (1-\alpha)q_T, \quad q_B^* = \alpha q_T, \quad a_i^* = (1-\alpha)\frac{\frac{1}{x_i}}{\sum_{i \in N} \frac{1}{x_i}}C_B + \alpha \frac{C_B}{N}$$



a determines the degree of bottleneck intensity.

Example

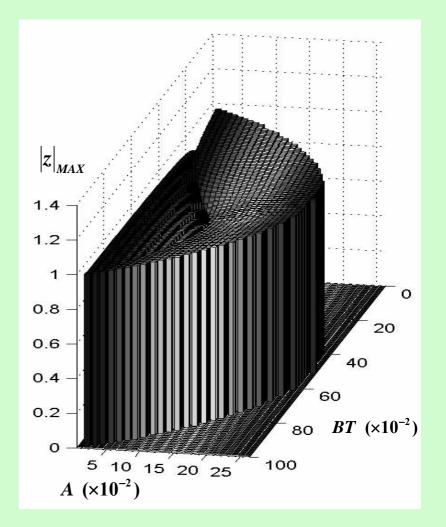

Asymptotic Stability

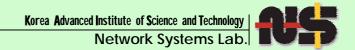
 \Box Error function : $e[k] = q[k] - q_T$

□ Closed-loop difference equation of e[k]: e[k+1] - 2e[k] + (1 + A + BT)e[k-1] - Ae[k-2] = 0

□ Characteristic equation : $z^3 - 2z^2 + (1 + A + BT)z - A = 0$

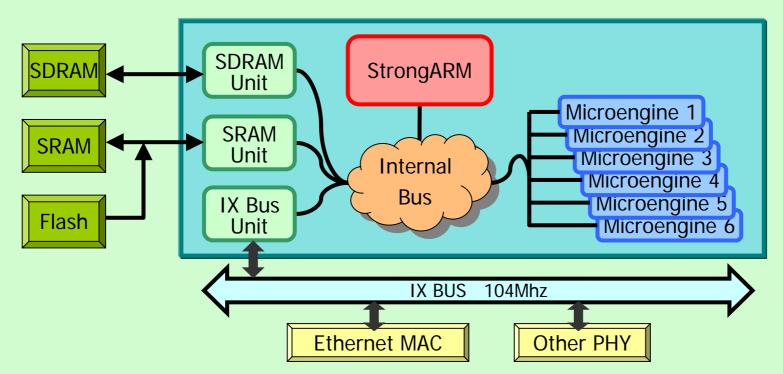
By Schűr-Cohn Stability Criteria [7], the closed-loop equation is asymptotically stable if and only if



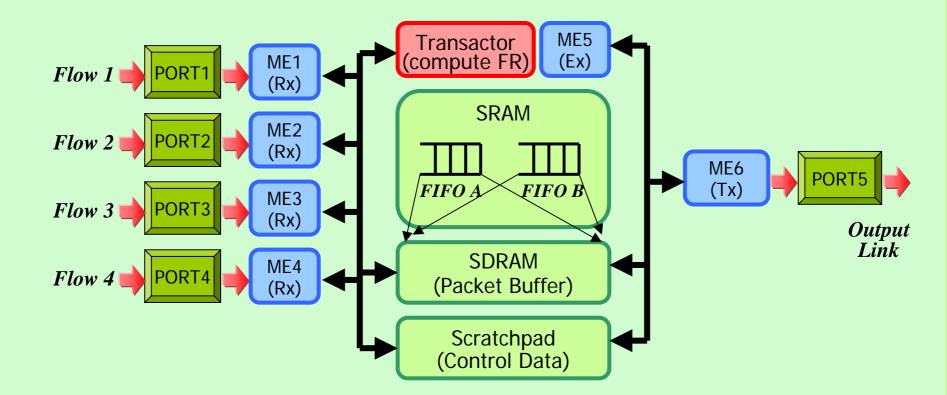

Asymptotic Decay Rate

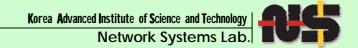
- Optimal gains
 - Using numerical analysis,

A = 0.32BT = 0.05


✤ Asymptotic decay rate : 0.704 / T

Simulation Environment

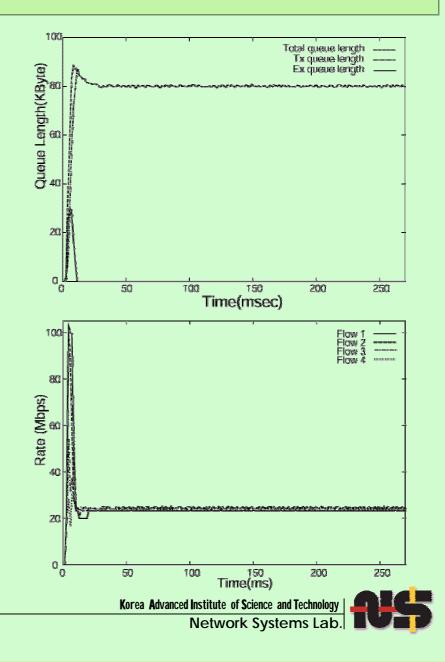

Intel IXP1200 Evaluation Platform [9]



- IXP1200 Network Processor
 - Consists of one StrongARM Core(166Mhz) and six Microengines(166Mhz).
 - Provides four hardware contexts with zero context switching overhead in each six microengine.

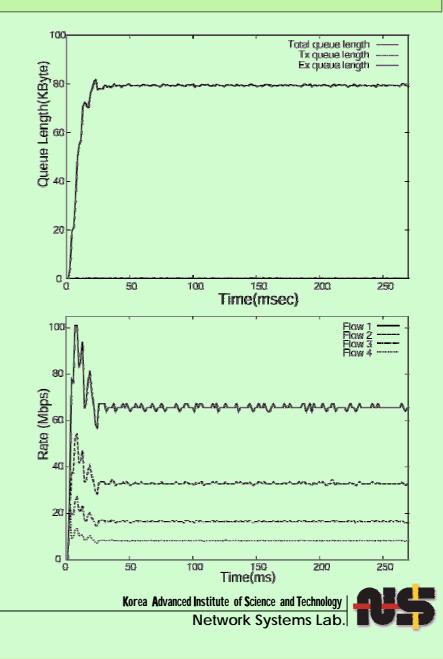
Simulation Environment

□ Implemented IPv4 (RFC 1812) forwarding engine on ME5.



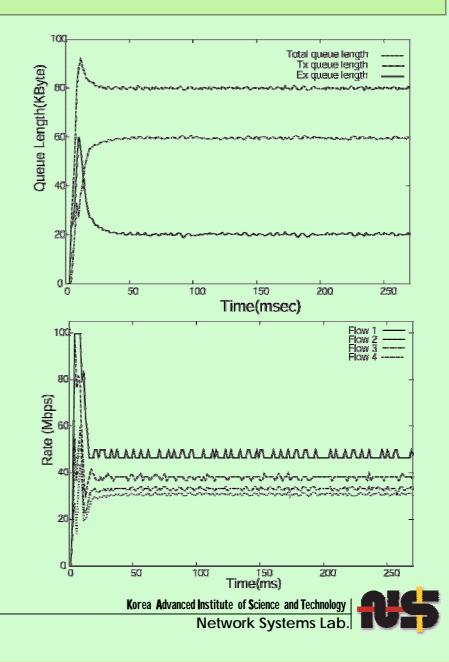
Bandwidth Resource Bottleneck Case

Flow No.	x _i	Fair Rate (Mbps)	Actual Rate (Mbps)
0	2.5	25.0	23.2
1	5.0	25.0	23.8
2	10.0	25.0	24.4
3	20.0	25.0	24.7
3	20.0	25.0	24.7


 $C_B = 100 \text{ Mbps}$ Tx queue length : 80015 bytes Ex queue length : 0 bytes

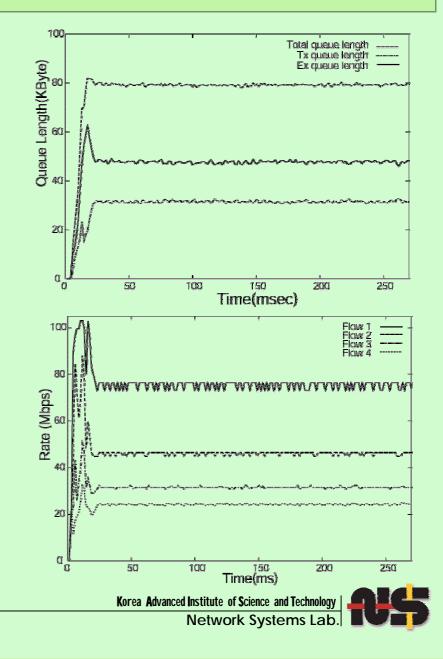
Processing Resource Bottleneck Case

Flow No.	x _i	Fair Rate (Mbps)	Actual Rate (Mbps)
0	4.7	70.8	65.7
1	9.4	35.4	32.9
2	18.8	17.7	16.5
3	37.5	8.9	8.3


 $C_B = 300 \text{ Mbps}$ Tx queue length : 150 bytes Ex queue length : 79217 bytes

Both Resources Bottleneck Case I (BW is more bottlenecked: $\alpha = 0.746$)

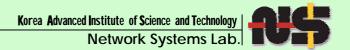
Flow No.	X _i	Fair Rate (Mbps)	Actual Rate (Mbps)
0	2.5	50.3	47.4
1	5.0	40.1	37.9
2	10.0	35.1	33.2
3	20.0	32.5	30.8


 $C_B = 158 \text{ Mbps}$ Tx queue length : 56699 bytes Ex queue length : 20316 bytes

Both Resource Bottleneck Case II (CPU is more bottlenecked: $\alpha = 0.393$)

Flow No.	x _i	Fair Rate (Mbps)	Actual Rate (Mbps)
0	2.5	78.4	75.3
1	5.0	49.1	46.1
2	10.0	34.4	31.5
3	20.0	27.1	24.3

 $C_B = 189 \text{ Mbps}$ Tx queue length : 31441 bytes Ex queue length : 47703 bytes



Conclusion

- □ Fair resource allocation when processing time is non-negligible
- New fairness characterization
- Control-theoretic algorithm
- Implementation of IP data path on IXP1200

Future work

- Distributed algorithm for a network of programmable nodes
- Understanding in optimization perspective
- Microscopic modeling of network processor architecture
- Joint management of bandwidth, processing and power

References

- [1] D. Herity, "Network Processor Programming", Embeded Systems Programming, July 2001.
- [2] D. L. Tennenhouse, J. M. Smith, "A Survey of Active Network Research", IEEE Communications, 35(1):80-86, January 1997.
- [3] Vijay Ramachandran, "Fair Resource Allocation in Active Networks", *Computer Communications*, 2000.
- [4] Song Chong et. al, "A Simple, Scalable, and Stable Explicit Rate Allocation Algorithm for Max-Min Flow Control with Minimum Rate Guarantee", *IEEE/ACM Transactions on Networking*, Vol. 9, June 2001.
- [5] T. Spalink, S. Karlin, L. Peterson, "Building a Robust Software-Based Router Using Network Processors", *Proceedings of the 18th ACM Symposium on Operating Systems Principles(SOSP)*
- [6] Y.D. Lin, "DiffServ over Network Processors: Implementation and Evaluation", IEEE/Proceedings of the 10th Symposium on High Performance Interconnections Hot Interconnects, HotI 2002.
- [7] Erik J. Johnson and Aaron R. Kunze, "IXP1200 Programming", Intel Press, 2002.
- [8] IXP1200 Hardware Reference Manual
- [9] T. Wolf and M. Franklin, "CommBench A Telecommunications Benchmark for Network Processors"

